Advertisements
Advertisements
Question
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solution
\[\sec x\cos5x + 1 = 0\]
\[ \Rightarrow \frac{\cos5x}{\cos x} + 1 = 0\]
\[ \Rightarrow \cos5x + \cos x = 0\]
\[ \Rightarrow 2\cos3x \cos2x = 0\]
\[\Rightarrow \cos3x = 0 \text{ or } \cos2x = 0\]
\[ \Rightarrow 3x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z \text{ or }2x = \left( 2m + 1 \right)\frac{\pi}{2}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{6} or x = \left( 2m + 1 \right)\frac{\pi}{4}\]
Putting n = 0 and m = 0, we get
\[x = \frac{\pi}{6}, \frac{\pi}{4} \left( 0 < x < \frac{\pi}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If sec x + tan x = k, cos x =
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x