English

Solve the Following Equation: Tan X + Tan 2 X + Tan 3 X = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]
Sum

Solution

\[\tan x + \tan 2x + \tan 3x = 0\]
Now,
\[\tan x + \tan2x + \tan (x + 2x) = 0\]
\[ \Rightarrow \tan x + \tan2x + \left( \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \right) = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x\tan2x) + \tan x + \tan2x = 0\]
\[ \Rightarrow (\tan x + \tan2x) (2 - \tan x \tan2x) = 0\]
\[\Rightarrow \tan x + \tan 2x = 0\] or
\[2 - \tan x \tan2x = 0\]
Now,

\[\tan x + \tan2x = 0 \]

\[ \Rightarrow \tan x = - \tan2x\]

\[ \Rightarrow \tan x = \tan - 2x\]

\[ \Rightarrow x = n\pi - 2x \]

\[ \Rightarrow 3x = n\pi \]

\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

And,

\[2 - \tan x \tan2x = 0 \]
\[ \Rightarrow \tan x \tan2x = 2 \]
\[ \Rightarrow \frac{\sin x}{\cos x}\frac{\sin2x}{\cos2x} = 2\]
\[ \Rightarrow \frac{2 \sin^2 x \cos x}{\cos x} = 2 \cos^2 x - 2 \sin^2 x\]
\[ \Rightarrow 4 \sin^2 x = 2 \cos^2 x \]
\[ \Rightarrow \tan^2 x = \frac{1}{2} \Rightarrow \tan^2 x = \tan^2 \alpha \]
\[ \Rightarrow x = m\pi + \alpha, m \in Z, \alpha = \tan^{- 1} \left( \frac{1}{2} \right)\]

∴ \[x = \frac{n\pi}{3}, n \in Z\] or

\[x = m\pi + \alpha, m \in Z\]

Here,

\[x = m\pi + \alpha, m \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 5.1 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×