Advertisements
Advertisements
Question
Solve the following equation:
Solution
Now,
\[ \Rightarrow \tan x + \tan2x + \left( \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \right) = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x\tan2x) + \tan x + \tan2x = 0\]
\[ \Rightarrow (\tan x + \tan2x) (2 - \tan x \tan2x) = 0\]
\[\tan x + \tan2x = 0 \]
\[ \Rightarrow \tan x = - \tan2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x \]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]
And,
\[2 - \tan x \tan2x = 0 \]
\[ \Rightarrow \tan x \tan2x = 2 \]
\[ \Rightarrow \frac{\sin x}{\cos x}\frac{\sin2x}{\cos2x} = 2\]
\[ \Rightarrow \frac{2 \sin^2 x \cos x}{\cos x} = 2 \cos^2 x - 2 \sin^2 x\]
\[ \Rightarrow 4 \sin^2 x = 2 \cos^2 x \]
\[ \Rightarrow \tan^2 x = \frac{1}{2} \Rightarrow \tan^2 x = \tan^2 \alpha \]
\[ \Rightarrow x = m\pi + \alpha, m \in Z, \alpha = \tan^{- 1} \left( \frac{1}{2} \right)\]
∴ \[x = \frac{n\pi}{3}, n \in Z\] or
Here,
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
Prove that
Prove that
In a ∆ABC, prove that:
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
Write the solution set of the equation
The smallest value of x satisfying the equation
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.