English

Prove That: 3 Sin π 6 Sec π 3 − 4 Sin 5 π 6 Cot π 4 = 1 - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 

Solution

 LHS = \[3\sin\frac{\pi}{6}sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}cot\frac{\pi}{4}\]
\[ = 3\sin\left( \frac{180^\circ}{6} \right)\sec\left( \frac{180^\circ}{3} \right) - 4\sin\left( \frac{5 \times 180^\circ}{6} \right)\cot\left( \frac{180^\circ}{4} \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 150^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 90^\circ \times 1 + 60^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin \left( 30^\circ \right)\sec \left( 60^\circ \right) - 4\cos \left( 60^\circ \right)\cot \left( 45^\circ \right)\]
\[ = 3 \times \frac{1}{2} \times 2 - 4 \times \frac{1}{2} \times 1\]
\[ = 3 - 2\]
\[ = 1\]
 = RHS
Hence proved .

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 2.7 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Which of the following is incorrect?


Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×