Advertisements
Advertisements
Question
Prove that:
Solution
LHS = \[3\sin\frac{\pi}{6}sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}cot\frac{\pi}{4}\]
\[ = 3\sin\left( \frac{180^\circ}{6} \right)\sec\left( \frac{180^\circ}{3} \right) - 4\sin\left( \frac{5 \times 180^\circ}{6} \right)\cot\left( \frac{180^\circ}{4} \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 150^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 90^\circ \times 1 + 60^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin \left( 30^\circ \right)\sec \left( 60^\circ \right) - 4\cos \left( 60^\circ \right)\cot \left( 45^\circ \right)\]
\[ = 3 \times \frac{1}{2} \times 2 - 4 \times \frac{1}{2} \times 1\]
\[ = 3 - 2\]
\[ = 1\]
= RHS
Hence proved .
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the set of values of a for which the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.