English

Solve the Following Equation: Sin X + Sin 2 X + Sin 3 X + Sin 4 X = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]
Sum

Solution

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

\[\Rightarrow \sin3x + \sin x + \sin4x + \sin2x = 0\]
\[ \Rightarrow 2 \sin \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) + 2 \sin \left( \frac{6x}{2} \right) \cos \left( \frac{2x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin2x \cos x + 2 \sin3x \cos x = 0\]
\[ \Rightarrow 2 \cos x ( \sin2x + \sin3x ) = 0\]
\[ \Rightarrow 2 \cos x\left( 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) \right) = 0\]
\[ \Rightarrow 4 \cos x \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) = 0\]

\[\Rightarrow \cos x = 0 , \sin \left( \frac{5x}{2} \right) = 0\]
\[\cos \left( \frac{x}{2} \right) = 0\]
\[\Rightarrow \cos x = \cos \frac{\pi}{2}, \sin \left( \frac{5x}{2} \right) = \sin 0\] or
\[\cos \left( \frac{x}{2} \right) = \cos \frac{\pi}{2}\]
\[\Rightarrow x = (2n + 1) \frac{\pi}{2}, n \in Z or \frac{5x}{2} = n\pi , n \in Z\] or,
\[\frac{x}{2} = (2n + 1) \frac{\pi}{2} , n \in Z\]
\[\Rightarrow x = (2n + 1) \frac{\pi}{2} , n \in Z\] or
\[x = \frac{2n\pi}{5} , n \in Z\] or
\[x = (2n + 1)\pi, n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 4.7 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the general solutions of tan2 2x = 1.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×