Advertisements
Advertisements
Question
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solution
2 cos2θ + 3 sin θ – 3 = θ
2(1 – sin2θ)+ 3 sin θ – 3 = θ
2 – 2 sin2θ + 3 sin θ – 3 = θ
– 2 sin2θ + 3 sin θ – 1 = θ
2 sin2 θ – 3 sin θ + 1 = θ
2 sin2θ – 2 sin θ – sin θ + 1 = θ
2 sin θ (sin θ – 1) – (sin θ – 1) = θ
(2 sin θ – 1)(sin θ – 1) = 0
2 sin θ – 1 = 0 or sin θ – 1 = θ
sin θ = `1/2` or sin θ = 1
To find the general solution of’ sin θ = `1/2`
sin θ = `1/2`
sin θ = `sin pi/6`
The general solution is θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
To find the general solution of sin θ = 1
sin θ = 1
sin θ = `pii/2`
The general solution is θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
∴ The required solutions are
θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
or
θ = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that:
Prove that:
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The smallest positive angle which satisfies the equation
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1