English

Find the General Solution of the Following Equation: Sin 2 X = Cos 3 X - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]
Sum

Solution

We have:

\[\sin2x = \cos3x\]
\[\cos3x = \sin2x\]

⇒ \[\cos3x = \cos \left( \frac{\pi}{2} - 2x \right)\]

⇒ \[3x = 2n\pi \pm \left( \frac{\pi}{2} - 2x \right), n \in Z\]

On taking positive sign, we have:
\[3x = 2n\pi + \left( \frac{\pi}{2} - 2x \right)\]

⇒ \[5x = 2n\pi + \frac{\pi}{2}\]

⇒ \[x = \frac{2n\pi}{5} + \frac{\pi}{10}\]

⇒ \[x = (4n + 1)\frac{\pi}{10}\]

\[n \in Z\]

 Now, on taking negative sign, we have:

\[3x = 2n\pi - \frac{\pi}{2} + 2x, n \in Z\]
⇒ \[x = 2n\pi - \frac{\pi}{2}\]
⇒ \[x = (4n - 1)\frac{\pi}{2}, n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 2.04 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

sin6 A + cos6 A + 3 sin2 A cos2 A =


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×