English

Prove That:Cos 570° Sin 510° + Sin (−330°) Cos (−390°) = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 

Solution

LHS =\[ \cos \left( 570^\circ \right)\sin \left( 510^\circ \right) + \sin \left( - 330^\circ \right)\cos \left( - 390^\circ \right)\]
\[ = \cos \left( 570^\circ \right) \sin \left( 510^\circ \right) + \left[ - \sin \left( 330^\circ \right) \right]\cos \left( 390^\circ \right) \left[ \because \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right] \]
\[ = \cos \left( 570^\circ \right)\sin\left( 510^\circ \right) - \sin \left( 330^\circ\right)\]
\[ = \cos \left( 90^\circ \times 6 + 30^\circ \right) \sin \left( 90^\circ \times 5 + 60^\circ \right) - \sin \left( 90^\circ \times 3 + 60^\circ \right) \cos \left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) - \left[ - \cos \left( 60^\circ \right) \right] \cos \left( 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) + \cos \left( 30^\circ \right) \sin \left( 60^\circ \right)\]
\[ = 0\]
 = RHS
Hence proved .

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 2.5 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×