Advertisements
Advertisements
Question
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Solution
\[ 4\pi = 720^\circ, \frac{3\pi}{2} = 270^\circ, \frac{5\pi}{6} = 150^\circ, \frac{2\pi}{3} = 120^\circ\]
LHS = \[\tan\left( 720^\circ \right) - \cos\left( 270^\circ \right) - \sin\left( 150^\circ \right) \cos\left( 120^\circ \right)\]
\[ = \tan\left( 90^\circ \times 8 + 0^\circ \right) - \cos\left( 90^\circ \times 3 + 0^\circ \right) - \sin\left( 90^\circ \times 1 + 60^\circ \right) \cos\left( 90^\circ \times 1 + 30^\circ \right)\]
\[ = \tan\left( 0^\circ \right) - \sin\left( 0^\circ \right) - \cos\left( 60^\circ \right) \left[ - \sin\left( 30^\circ \right) \right]\]
\[ = \tan\left( 0^\circ \right) - \sin\left( 0^\circ \right) + \cos\left( 60^\circ \right) \sin\left( 30^\circ \right)\]
\[ = 0 - 0 + \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{1}{4}\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If sec x + tan x = k, cos x =
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.