English

If Sec X + Tan X = K, Cos X = - Mathematics

Advertisements
Advertisements

Question

If sec x + tan x = k, cos x =

Options

  • \[\frac{k^2 + 1}{2k}\]

     

  • \[\frac{2k}{k^2 + 1}\]

     

  • \[\frac{k}{k^2 + 1}\]

     

  • \[\frac{k}{k^2 - 1}\]

     

MCQ

Solution

\[\frac{2k}{k^2 + 1}\]

We have:

\[\sec x + \tan x = k \left( 1 \right)\]

\[ \Rightarrow \frac{1}{\sec x + \tan x} = \frac{1}{k}\]

\[ \Rightarrow \frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} = \frac{1}{k}\]

\[ \Rightarrow \frac{\left( \sec x + \tan x \right)\left( \sec x - \tan x \right)}{\left( \sec x + \tan x \right)} = \frac{1}{k}\]

\[ \therefore \sec x-\tan x = \frac{1}{k} \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\sec x = k + \frac{1}{k}\]

\[ \Rightarrow 2\sec x = \frac{k^2 + 1}{k}\]

\[ \Rightarrow \sec x = \frac{k^2 + 1}{2k}\]

\[ \Rightarrow \frac{1}{\cos x} = \frac{k^2 + 1}{2k}\]

\[ \Rightarrow \cos x = \frac{2k}{k^2 + 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 23 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[4 \sin^2 x = 1\], then the values of x are

 


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×