English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following equations:cos θ + cos 3θ = 2 cos 2θ - Mathematics

Advertisements
Advertisements

Question

Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ

Sum

Solution

cos 3θ + cos θ = 2 cos 2θ

`2 cos ((3theta + theta)/2) * cos ((3theta - theta)/2)` = 2 cos 2θ

`2cos ((4theta)/2) * cos ((2theta)/2)` = 2 cos 2θ 

2 cos 2θ . cos θ = 2 cos 2θ

cos 2θ . cos θ – cos 2θ = θ

cos 2θ (cos θ – 1) = θ

cos 2θ = θ or cos θ – 1 = θ

cos 2θ = θ or cos θ = 1

To find the general solution of cos 2θ = θ

The general solution is

2θ = `(2"n" + 1) pi/2`, n ∈ Z

θ = `(2"n" + 1) pi/4`, n ∈ Z

To find the general solution of cos θ = 1

cos θ = 1

cos θ = cos 0

The general solution is θ = 2nπ , n ∈ Z

∴ The required solutions are

θ = `(2"n" + 1) pi/4`, n ∈ Z

or

θ = 2nπ, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 3. (iii) | Page 133

RELATED QUESTIONS

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×