English

If √ 3 Cos X + Sin X = √ 2 , Then General Value of ​X is - Mathematics

Advertisements
Advertisements

Question

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is

Options

  • \[n \pi + \left( - 1 \right)^n \frac{\pi}{4}, n \in Z\]

     

  • \[\left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

  • \[n \pi + \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

     

  • \[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

MCQ
Sum

Solution

\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
Given equation:
\[\sqrt{3}\cos x + \sin x = \sqrt{2}\]  ...(i)
This is of the form \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3} , b = 1\] and \[c = \sqrt{2}\].
Let: a = r sin α and b = r sin α.
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\]
And,
\[\tan \alpha = \frac{a}{b} \]
\[ \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Putting 
\[a = \sqrt{3} = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (i), we get:

\[r \cos x \sin\alpha + r \sin x \cos\alpha = \sqrt{2}\]

\[ \Rightarrow r \sin (x + \alpha) = \sqrt{2}\]

\[ \Rightarrow 2 \sin (x + \alpha) = \sqrt{2}\]

\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \cos \frac{\pi}{4}\]

\[ \Rightarrow x + \frac{\pi}{3} = n\pi + ( - 1 )^n \frac{\pi}{4}, n \in Z\]

\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 17 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[4 \sin^2 x = 1\], then the values of x are

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×