Advertisements
Advertisements
Question
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Options
- \[n \pi + \left( - 1 \right)^n \frac{\pi}{4}, n \in Z\]
\[\left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
- \[n \pi + \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
Solution
\[n \pi + \left( - 1 \right)^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
Given equation:
\[\sqrt{3}\cos x + \sin x = \sqrt{2}\] ...(i)
This is of the form \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3} , b = 1\] and \[c = \sqrt{2}\].
Let: a = r sin α and b = r sin α.
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\]
And,
\[\tan \alpha = \frac{a}{b} \]
\[ \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \]
\[ \Rightarrow \alpha = \frac{\pi}{3}\]
Putting
\[a = \sqrt{3} = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (i), we get:
\[r \cos x \sin\alpha + r \sin x \cos\alpha = \sqrt{2}\]
\[ \Rightarrow r \sin (x + \alpha) = \sqrt{2}\]
\[ \Rightarrow 2 \sin (x + \alpha) = \sqrt{2}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \sin \left( x + \frac{\pi}{3} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x + \frac{\pi}{3} = n\pi + ( - 1 )^n \frac{\pi}{4}, n \in Z\]
\[ \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{4} - \frac{\pi}{3}, n \in Z\]
APPEARS IN
RELATED QUESTIONS
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
Prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the solution set of the equation
If \[4 \sin^2 x = 1\], then the values of x are
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x