English

If E Sin X − E − Sin X − 4 = 0 , Then X = - Mathematics

Advertisements
Advertisements

Question

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =

Options

  • 0

  • \[\sin^{- 1} \left\{ \log_e \left( 2 - \sqrt{5} \right) \right\}\]

     

  • 1

  • none of these

MCQ
Sum

Solution

 none of these
Given equation:
\[e^{\sin x} - e^{- \sin x} - 4 = 0\]
Let :
\[e^{\sin x }= y\]
Now,
\[y - y^{- 1} - 4 = 0\]
\[ \Rightarrow y^2 - 4y - 1 = 0\]

∴ \[y = \frac{4 \pm \sqrt{16 + 4}}{2}\]
\[\Rightarrow y = \frac{4 \pm \sqrt{20}}{2}\]
\[ \Rightarrow y = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}\]
and,
\[y = e^{\sin x} \]
\[ \Rightarrow e^{\sin x} = 2 \pm \sqrt{5}\]
Taking log on both sides, we get:
\[\sin x = \log_e (2 \pm \sqrt{5})\]
\[\Rightarrow \sin x = \log_e ( 2 + \sqrt{5})\text{ or }\sin x = \log_e ( 2 - \sqrt{5})\]
\[ \Rightarrow \sin x = \log_e ( 4 . 24)\text{ or }\sin x = \log_e ( - 0 . 24)\]
\[ \log_e ( 4 . 24) > 1\text{ and }\sin x\text{ cannot be greater than }1 . \]
In the other case, the log of negative term occurs, which is not defined.
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 15 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×