Advertisements
Advertisements
Question
Find the general solution of the following equation:
Solution
We have:
⇒ \[\sin9x - \sin x = 0\]
⇒ \[2 \sin \left( \frac{9x - x}{2} \right) \cos \left( \frac{9x + x}{2} \right) = 0\]
⇒ \[\sin \frac{8x}{2} = 0\] or \[\cos \frac{10x}{2} = 0\]
⇒ \[\sin 4x = 0\] or \[\cos 5x = 0\]
⇒ \[4x = n\pi\]
\[n \in Z\] or \[5x = (2n + 1)\frac{\pi}{2}\],
\[n \in Z\]
⇒ \[x = \frac{n\pi}{4}\],
\[n \in Z\] or \[x = (2n + 1)\frac{\pi}{10}\],
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.