English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Solve the following equations:sin 5x − sin x = cos 3 - Mathematics

Advertisements
Advertisements

Question

Solve the following equations:
sin 5x − sin x = cos 3

Sum

Solution

`2cos ((5x + x)/2) * sin((5x - x)/2)` = cos 3x

`2 cos (6x/2) * sin (4x/2)` = cos 3x

2 cos 3 x . sin 2x = cos 3x

2 cos 3x . sin 2x – cos 3x = 0

cos 3x (2 sin 2x – 1) = 0

cos 3x = 0 or 2 sin 2x – 1 = 0

cos 3x = 0 or sin 2x = `1/2`

To find the general solution of cos 3x = 0

The general solution of cos 3x = 0 is

3x = `(2"n" + 1)^(pi/2)`, n ∈ Z

x = `(2"n" + 1)^(pi/6)`, n ∈ Z

To find the general solution of sin 2x = `1/2`

sin 2x = `1/2`

sin 2x = `sin (pi/6)`

The general solution is

2x = `"n"pi + (- 1)^"n"  pi/6`, n ∈ Z

x = `("n"pi)/2 + (- 1)^"n"  pi/12`, n ∈ Z

∴ The required solutions are

x = `(2"n" + 1)  pi/6`, n ∈ Z

x = `("n"pi)/2 + (- 1)^"n"  pi/12`, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 3. (i) | Page 133

RELATED QUESTIONS

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the general solutions of tan2 2x = 1.

 

Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×