Advertisements
Advertisements
Question
Solve the following equations:
sin 5x − sin x = cos 3
Solution
`2cos ((5x + x)/2) * sin((5x - x)/2)` = cos 3x
`2 cos (6x/2) * sin (4x/2)` = cos 3x
2 cos 3 x . sin 2x = cos 3x
2 cos 3x . sin 2x – cos 3x = 0
cos 3x (2 sin 2x – 1) = 0
cos 3x = 0 or 2 sin 2x – 1 = 0
cos 3x = 0 or sin 2x = `1/2`
To find the general solution of cos 3x = 0
The general solution of cos 3x = 0 is
3x = `(2"n" + 1)^(pi/2)`, n ∈ Z
x = `(2"n" + 1)^(pi/6)`, n ∈ Z
To find the general solution of sin 2x = `1/2`
sin 2x = `1/2`
sin 2x = `sin (pi/6)`
The general solution is
2x = `"n"pi + (- 1)^"n" pi/6`, n ∈ Z
x = `("n"pi)/2 + (- 1)^"n" pi/12`, n ∈ Z
∴ The required solutions are
x = `(2"n" + 1) pi/6`, n ∈ Z
x = `("n"pi)/2 + (- 1)^"n" pi/12`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{a}{b},\] show that
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the general solutions of tan2 2x = 1.
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.