English

If Sin X = a 2 − B 2 a 2 + B 2 , Then the Values of Tan X, Sec X and Cosec X - Mathematics

Advertisements
Advertisements

Question

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x

Solution

\[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\]
We know: 
\[ \sin^2 x + \cos^2 x = 1\]
\[ \cos^2 x = 1 - \sin^2 x\]
\[ = 1 - \left( \frac{a^2 - b^2}{a^2 + b^2} \right)^2 \]
\[ = \frac{\left( a^4 + b^4 + 2 a^2 b^2 \right) - \left( a^4 + b^4 - 2 a^2 b^2 \right)}{\left( a^2 + b^2 \right)^2}\]
\[ = \frac{4 a^2 b^2}{\left( a^2 + b^2 \right)^2}\]
\[ \Rightarrow \cos x = \frac{2ab}{\left( a^2 + b^2 \right)}\]
\[\tan x = \frac{\sin x}{\cos x} = \frac{\frac{a^2 - b^2}{a^2 + b^2}}{\frac{2ab}{a^2 + b^2}} = \frac{a^2 - b^2}{2ab}\]
\[\sec x = \frac{1}{\cos x} = \frac{a^2 + b^2}{2ab}\]
\[cosec x = \frac{1}{\sin x} = \frac{a^2 + b^2}{a^2 - b^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 18 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×