Advertisements
Advertisements
प्रश्न
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
उत्तर
\[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\]
We know:
\[ \sin^2 x + \cos^2 x = 1\]
\[ \cos^2 x = 1 - \sin^2 x\]
\[ = 1 - \left( \frac{a^2 - b^2}{a^2 + b^2} \right)^2 \]
\[ = \frac{\left( a^4 + b^4 + 2 a^2 b^2 \right) - \left( a^4 + b^4 - 2 a^2 b^2 \right)}{\left( a^2 + b^2 \right)^2}\]
\[ = \frac{4 a^2 b^2}{\left( a^2 + b^2 \right)^2}\]
\[ \Rightarrow \cos x = \frac{2ab}{\left( a^2 + b^2 \right)}\]
\[\tan x = \frac{\sin x}{\cos x} = \frac{\frac{a^2 - b^2}{a^2 + b^2}}{\frac{2ab}{a^2 + b^2}} = \frac{a^2 - b^2}{2ab}\]
\[\sec x = \frac{1}{\cos x} = \frac{a^2 + b^2}{2ab}\]
\[cosec x = \frac{1}{\sin x} = \frac{a^2 + b^2}{a^2 - b^2}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of points of intersection of the curves
Write the number of points of intersection of the curves
Write the solution set of the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.