हिंदी

A Value of X Satisfying Cos X + √ 3 Sin X = 2 is - Mathematics

Advertisements
Advertisements

प्रश्न

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

विकल्प

  • `(5pi)/3`

  • \[\frac{4\pi}{3}\]

  • `(2pi)/3`

  • \[\frac{\pi}{3}\]

MCQ
योग

उत्तर

\[\frac{\pi}{3}\]
Given equation: 
\[\cos x + \sqrt{3} \sin x = 2\]    ...(i)
Thus, the equation is of the form 
\[a \cos x + b \sin x = c\], where 
\[a = 1, b = \sqrt{3}\] and c = 3.
Let: \[a = r \cos \alpha\] and \[b = r \sin \alpha\]
\[1 = r \cos \alpha\] and `sqrt3=r sinalpha`
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and 
\[\tan \alpha = \frac{b}{a} \Rightarrow \tan \alpha = \frac{\sqrt{3}}{1} \Rightarrow \tan \alpha = \tan \frac{\pi}{3} \Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\] and \[b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 2\]
\[ \Rightarrow r \cos\left( x - \alpha \right) = 2\]
\[ \Rightarrow r \cos\left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]
\[ \Rightarrow x - \frac{\pi}{3} = 0\]
\[ \Rightarrow x = \frac{\pi}{3}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 12 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×