Advertisements
Advertisements
प्रश्न
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
विकल्प
- \[\frac{21}{22}\]
- \[\frac{15}{16}\]
- \[\frac{44}{117}\]
- \[\frac{117}{43}\]
उत्तर
We have:
\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{cosec x + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosec x + \cot x} = \frac{2}{11}$\]
\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]
\[ \therefore cosecx-\cot x = \frac{2}{11} \left( 2 \right)\]
Subtracting ( 2 ) from (1):
\[2\cot x = \frac{11}{2} - \frac{2}{11}\]
\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]
\[ \Rightarrow 2\cot x = \frac{117}{22}\]
\[ \Rightarrow \cot x=\frac{117}{44}\]
\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]
\[ \Rightarrow \tan x = \frac{44}{117}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the general solutions of tan2 2x = 1.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.