हिंदी

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.

रिक्त स्थान भरें

उत्तर

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is `underline(x^2 - (2/(sin 2A)) x + 1` = 0.

Explanation:

Given a ΔABC with ∠C = 90°

So, the equation whose roots are tanA and tanB is

x2 – (tanA + tanB)x + tanA.tanB = 0

A + B = 90°   ......[∵ ∠C = 90°]

⇒ tan(A + B) = tan90°

⇒ `(tanA + tanB)/(1 - tanA tanB) = 1/0`

⇒ 1 – tanA tanB = 0

⇒ tan A tan B = 1   .......(i)

Now tanA + tanB = `sinA/cosA + sinB/cosB`

= `(sinA cosB + cosA sinB)/(cosA cosB)`

= `(sin(A + B))/(cosA cosB)`

= `(sin 90^circ)/(cosA. cos(90^circ - A))`

= `1/(cosA sinA)`

∴ tanA + tanB = `2/(2sinA cosA)`

= `2/(sin 2A)`   ......(ii)

From (i) and (ii) we get

`x^2 - (2/(sin 2A)) x + 1` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 64 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the general solutions of tan2 2x = 1.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×