Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
विकल्प
`"b"/"a"`
`"a"/"b"`
`- "a"/"b"`
`- "b"/"a"`
उत्तर
`- "a"/"b"`
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\tan x = \frac{a}{b},\] show that
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the general solutions of tan2 2x = 1.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`