हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:sin 2θ – cos 2θ – sin θ + cos θ = θ - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ

योग

उत्तर

sin 2θ – cos 2θ – sin θ + cos θ = θ

`2cos ((2theta + theta)/2) sin ((2theta - theta)/2) - 2 sin ((2theta + theta)/2) sin ((theta - 2theta)/2)` = 0

`2cos ((3theta)/2) * sin  (theta/2) - 2sin ((3theta)/2)  sin  (- theta/2)` = 0

`2cos ((3theta)/2) * sin  (theta/2) + 2sin ((3theta)/2)  sin  (theta/2)` = 0

`2sin  theta/2 [cos ((3theta)/2) + sin  ((3theta)/2)]` = 0

`2 sin  theta/2` = 0 or `cos  ((3theta)/2) + sin  ((3theta)/2)` = 0

`sin  theta/2` = 0 or `cos  ((3theta)/2) = - sin  ((3theta)/2)`

`sin  theta/2` = 0 or `(sin  ((3theta)/2))/(cos  ((3theta)/2))` = – 1

`sin  theta/2` = 0 or `tan  ((3theta)/2)` = – 1

To find the general solution of `sin  theta/2` = 0

The general solution is

`theta/2` = nπ, n ∈ Z

 θ = 2nπ, n ∈ Z
To find the general solution of `tan  ((3theta)/2)` = – 1

`tan  ((3theta)/2)` = – 1

`tan  ((3theta)/2) = tan (pi - pi/4)`

`tan  ((3theta)/2) = tan ((4pi - pi)/4)`

`tan  ((3theta)/2) = tan  ((3pi)/4)`

The general solution is

`(3theta)/2 = "n" + pi/4`, n ∈ Z

θ = `(2"n"pi)/3 + (2pi)/(3 xx 4)`, n ∈ Z

θ = `(2"n"pi)/3 + pi/6`, n ∈ Z

∴ The required solutions are

θ = 2nπ, n ∈ Z

or

θ = `(2"n"pi)/3 + pi/6`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (v) | पृष्ठ १३३

संबंधित प्रश्न

Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


Which of the following is correct?


Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×