Advertisements
Advertisements
प्रश्न
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
उत्तर
sin 2θ – cos 2θ – sin θ + cos θ = θ
`2cos ((2theta + theta)/2) sin ((2theta - theta)/2) - 2 sin ((2theta + theta)/2) sin ((theta - 2theta)/2)` = 0
`2cos ((3theta)/2) * sin (theta/2) - 2sin ((3theta)/2) sin (- theta/2)` = 0
`2cos ((3theta)/2) * sin (theta/2) + 2sin ((3theta)/2) sin (theta/2)` = 0
`2sin theta/2 [cos ((3theta)/2) + sin ((3theta)/2)]` = 0
`2 sin theta/2` = 0 or `cos ((3theta)/2) + sin ((3theta)/2)` = 0
`sin theta/2` = 0 or `cos ((3theta)/2) = - sin ((3theta)/2)`
`sin theta/2` = 0 or `(sin ((3theta)/2))/(cos ((3theta)/2))` = – 1
`sin theta/2` = 0 or `tan ((3theta)/2)` = – 1
To find the general solution of `sin theta/2` = 0
The general solution is
`theta/2` = nπ, n ∈ Z
θ = 2nπ, n ∈ Z
To find the general solution of `tan ((3theta)/2)` = – 1
`tan ((3theta)/2)` = – 1
`tan ((3theta)/2) = tan (pi - pi/4)`
`tan ((3theta)/2) = tan ((4pi - pi)/4)`
`tan ((3theta)/2) = tan ((3pi)/4)`
The general solution is
`(3theta)/2 = "n" + pi/4`, n ∈ Z
θ = `(2"n"pi)/3 + (2pi)/(3 xx 4)`, n ∈ Z
θ = `(2"n"pi)/3 + pi/6`, n ∈ Z
∴ The required solutions are
θ = 2nπ, n ∈ Z
or
θ = `(2"n"pi)/3 + pi/6`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
Which of the following is correct?
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The smallest positive angle which satisfies the equation
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.