हिंदी

Write the Values of X in [0, π] for Which Sin 2 X , 1 2 and Cos 2x Are in A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.

योग

उत्तर

\[\sin2x, \frac{1}{2} and \cos2x are in AP . \]
\[ \therefore \sin2x + \cos2x = 2 \times \frac{1}{2}\]
\[ \Rightarrow \sin2x + \cos2x = 1 . . . (1)\]
This equation is of the form \[a \sin\theta + b \cos\theta = c\], where
a = 1, b = 1 and c = 1
Now,
Let: \[a = r \sin \alpha\] and \[b = r \cos \alpha\]
Thus, we have:

\[r = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\] and `tanalpha =1=>alpha=pi/4`
On putting \[a = 1 = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (1), we get:
\[r \sin \alpha \sin2x + r \cos\alpha \cos2x = 1\]

\[\Rightarrow r \cos (2x - \alpha) = 1\]

\[ \Rightarrow \sqrt{2} \cos \left( 2x - \frac{\pi}{4} \right) = 1\]

\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} , n \in Z\]

Taking positive value, we get:

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]

\[ \Rightarrow x = n\pi + \frac{\pi}{4}\]

Taking negative value, we get: 

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]

\[ \Rightarrow x = n\pi, n \in Z\]
For n = 0, the values of x are \[\frac{\pi}{4} and 0\]  and for n = 1, the values of x are `(5pi)/4` and π

\[\frac{5\pi}{4} \text{ does not satisfy the condition.}\]

For the other value of n, the given condition is not true, i.e., [0, π].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.2 | Q 7 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


sin6 A + cos6 A + 3 sin2 A cos2 A =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×