Advertisements
Advertisements
प्रश्न
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
विकल्प
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left(\pi/4,3 \pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
उत्तर
Given equation:
\[\cos^2 x + \sin x + 1 = 0\]
\[ \Rightarrow (1 - \sin^2 x) + \sin x + 1 = 0\]
\[ \Rightarrow 2 - \sin^2 x + \sin x = 0\]
\[ \Rightarrow \sin^2 x - \sin x - 2 = 0\]
\[ \Rightarrow \sin^2 x - 2 \sin x + \sin x - 2 = 0\]
\[ \Rightarrow \sin x ( \sin x - 2 ) + 1 ( \sin x - 2 ) = 0\]
\[ \Rightarrow (\sin x - 2) ( \sin x + 1) = 0\]
\[\Rightarrow \sin x - 2 = 0\] or \[\sin x + 1 = 0\]
\[\Rightarrow \sin x = 2\] or sin x = - 1
Now,
sin x = 2 is not possible
And,
\[\sin x = - 1 \]
\[ \Rightarrow \sin x = \sin \frac{3\pi}{2} \]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}\]
For n = 0,
\[x = \frac{3\pi}{2}\], for n = 1,
\[x = \frac{7\pi}{2}\] and so on.
Hence,
\[\frac{3\pi}{2}\] lies in the interval
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
The smallest value of x satisfying the equation
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.