Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
विकल्प
b2 − 1, if `"b" ≤ sqrt(2)`
b2 − 1, if `"b" > sqrt(2)`
b2 − 1, if b ≥ 1
b2 − 1, if `"b" ≥ sqrt(2)`
उत्तर
b2 − 1, if `"b" ≤ sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Solve the following equation:
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
The minimum value of 3cosx + 4sinx + 8 is ______.