हिंदी

Solve the equation sin θ + sin 3θ + sin 5θ = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation sin θ + sin 3θ + sin 5θ = 0

योग

उत्तर

We have sin θ + sin 3θ + sin 5θ = 0

or (sin θ + sin 5θ) + sin 3θ = 0

or 2 sin 3θ cos 2θ + sin 3θ = 0   

or sin 3θ (2 cos 2θ + 1) = 0

or sin 3θ = 0 or cos 2θ = `- 1/2`

When sin 3θ = 0, then 3θ = nπ or θ = `("n"pi)/3`

When cos 2θ = `-1/2`

= `cos  (2pi)/3`

Then 2θ = `2"n"pi +- (2pi)/3` or θ = `"n"pi +- pi/3`

Which gives θ = `(3"n" + 1)  pi/3` or θ = `(3"n" - 1)  pi/3`

All these values of θ are contained in θ = `("n"pi)/3` , n ∈ Z.

Hence, the required solution set is given by `{θ : θ = ("n"pi)/3, "n" ∈ "Z"}`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Solved Examples [पृष्ठ ४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Solved Examples | Q 7 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×