Advertisements
Advertisements
प्रश्न
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
विकल्प
7
8
9.5
10
उत्तर
9.5
We have:
\[ \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 85^\circ + \sin^2 90^\circ\]
\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 \left( 90^\circ - 10^\circ \right) + \sin^2 \left( 90^\circ - 5^\circ \right) + \sin^2 90^\circ\]
\[ = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \cos^2 10^\circ + \cos^2 5^\circ + \sin^2 90^\circ\]
\[ = \left( \sin^2 5^\circ + \cos^2 5^\circ \right) + \left( \sin^2 10^\circ + \cos^2 10^\circ \right) + + \left( \sin^2 15^\circ + \cos^2 15^\circ \right)\]
\[ + \left( \sin^2 20^\circ + \cos^2 20^\circ \right) + \left( \sin^2 25^\circ + \cos^2 25^\circ \right) + \left( \sin^2 30^\circ + \cos^2 30^\circ \right) \]
\[ + \left( \sin^2 35^\circ + \cos^2 35^\circ \right) + \left( \sin^2 40^\circ + \cos^2 40^\circ \right) + \sin^2 45^\circ + \sin^2 90^\circ\]
\[ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \left( \frac{1}{\sqrt{2}} \right)^2 + \left( 1 \right)^2 \left[ \because \sin^2 \theta + \cos^2 \theta = 1 \right]\]
\[ = 8 + \frac{1}{2} + 1\]
\[ = 9 . 5\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[4 \sin^2 x = 1\], then the values of x are
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.