Advertisements
Advertisements
प्रश्न
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
विकल्प
- \[\frac{5}{3}\]
- \[\frac{3}{5}\]
- \[- \frac{3}{5}\]
- \[- \frac{5}{3}\]
उत्तर
We have:
\[\text{ cosec }x - \cot x = \frac{1}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{{\text{ cosec }}^2 x - \cot^2 x}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{\left(\text{ cosec }x + \cot x \right)\left( \text{ cosec }x - \cot x \right)}{\left(\text{ cosec }x - \cot x \right)} = 2\]
\[ \therefore\text{ cosec }x +\cot x = 2 \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\text{ cosec} x = \frac{1}{2} + 2\]
\[ \Rightarrow 2 \text{ cosec} x = \frac{5}{2}\]
\[ \Rightarrow\text{ cosec} x = \frac{5}{4}\]
\[ \Rightarrow \frac{1}{\sin x}=\frac{5}{4}\]
\[ \Rightarrow \sin x=\frac{4}{5}\]
\[\text{ Now, }0 < \theta < \frac{\pi}{2}\]
\[ \therefore \cos\theta = \sqrt{1 - \sin^2 \theta}\]
\[ = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ = \frac{3}{5}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
Prove that
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the set of values of a for which the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0