हिंदी

Find the Principal and General Solutions of the Equation `Cot X = -sqrt3` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`

उत्तर

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.4 [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise 3.4 | Q 3 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×