हिंदी

If Cos X = K Has Exactly One Solution in [0, 2π], Then Write the Values(S) of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 
योग

उत्तर

Given: 
\[\cos x = k\]
If \[k = 0\], then

\[\cos x = 0\]

\[ \Rightarrow \cos x = \cos \frac{\pi}{2}\]

\[ \Rightarrow x = (2n + 1) \frac{\pi}{2}, n \in Z\]
Now,

\[x = \frac{3\pi}{2} , \frac{5\pi}{2}, \frac{7\pi}{2}, . . .\]  for 
n = 1, 2, 3, . . .
If k = 1, then

\[cos x = 1\]

\[ \Rightarrow \cos x = \cos 0\]

\[ \Rightarrow x = 2m\pi, m \in Z\]
Now, \[x = 2\pi, 4\pi, 6\pi, 8\pi, . . .\]

\[m = 1, 2, 3, 4, . . .\]
If \[k = - 1,\] then

\[\cos x = - 1\]

\[ \Rightarrow \cos x = \cos \pi\]

\[ \Rightarrow x = 2p\pi \pm \pi, p \in Z\]
Now,

\[x = 2p\pi + \pi, i . e . , x = 3\pi, 5\pi, 7\pi, . . .\] when
p = 1, 2, 3, . . .
And \[x = 2p\pi - \pi, i . e . , x = \pi, 3\pi, 5\pi, 7\pi, . . .\] when
p = 1, 2, 3, 4, . . .
Clearly, we can see that for \[x = \pi\]
\[\cos x = k\] has exactly one solution.
∴ k = - 1
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.2 | Q 5 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×