हिंदी

The Equation 3 Cos X + 4 Sin X = 6 Has .... Solution. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.

विकल्प

  • finite

  • infinite

  • one

  • no

MCQ
योग

उत्तर

no
Given equation:
\[3 \cos x + 4 \sin x = 6\]  ...(i)
Thus, the equation is of the form
\[a \cos x + b \sin x = c\], where
\[a = 3, b = 4\] and c = 6.
Let: \[a = 3 = r \cos \alpha\] and \[b = 4 = r \sin \alpha\]
Now,
\[\tan \alpha = \frac{b}{a} = \frac{4}{3}\]
\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{4}{3} \right)\]
Also,
\[r = \sqrt{a^2 + b^2} = \sqrt{9 + 16} = \sqrt{25} = 5\]
On putting
\[a = 3 = r \cos \alpha\] and \[b = 4 = r \sin \alpha\] in equation (i), we get:

\[r \cos\alpha \cos\theta + \sin\alpha \sin\theta = 6\]

\[ \Rightarrow r \cos (\theta - \alpha ) = 6\]

\[ \Rightarrow 5 \cos (\theta - \alpha) = 6\]

\[ \Rightarrow \cos (\theta - \alpha) = \frac{6}{5}\]
From here, we cannot find the value of \[\theta\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 16 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If tan θ + sec θ =ex, then cos θ equals


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the general solutions of tan2 2x = 1.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×