हिंदी

If T N = Sin N X + Cos N X , Prove that T 3 − T 5 T 1 = T 5 − T 7 T 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 

उत्तर

LHS:\[\frac{T_3 - T_5}{T_1} = \frac{\left( \sin^3 x + \cos^3 x \right) - \left( \sin^5 x + \cos^5 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x - \sin^5 x + \cos^3 x - \cos^5 x}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x\left( 1 - \sin^2 x \right) + \cos^3 x\left( 1 - \cos^2 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x . \cos^2 x + c {os}^3 x . \sin^2 x}{\sin x + \cos x}\]
\[ = \frac{\sin^2 x . \cos^2 x\left( \sin x + cos x \right)}{\sin x + \cos x}\]
\[ = \sin^2 x . \cos^2 x\]
RHS:  \[\frac{T_5 - T_7}{T_3}\]
\[ = \frac{\left( \sin^5 x + \cos^5 x \right) - \left( \sin^7 x + \cos^7 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x - si n^7 x + \cos^5 x - \cos^7 x}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x\left( 1 - \sin^2 x \right) + \cos^5 x\left( 1 - \cos^2 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x \cos^2 x + \cos^5 x \sin^2 x}{\sin^3 x + \cos^3 x}\]
\[ = \sin^2 x . \cos^2 x\]
LHS = RHS
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.1 | Q 26.1 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation cos 4 x = cos 2 x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×