Advertisements
Advertisements
प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
उत्तर
LHS:\[\frac{T_3 - T_5}{T_1} = \frac{\left( \sin^3 x + \cos^3 x \right) - \left( \sin^5 x + \cos^5 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x - \sin^5 x + \cos^3 x - \cos^5 x}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x\left( 1 - \sin^2 x \right) + \cos^3 x\left( 1 - \cos^2 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x . \cos^2 x + c {os}^3 x . \sin^2 x}{\sin x + \cos x}\]
\[ = \frac{\sin^2 x . \cos^2 x\left( \sin x + cos x \right)}{\sin x + \cos x}\]
\[ = \sin^2 x . \cos^2 x\]
RHS: \[\frac{T_5 - T_7}{T_3}\]
\[ = \frac{\left( \sin^5 x + \cos^5 x \right) - \left( \sin^7 x + \cos^7 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x - si n^7 x + \cos^5 x - \cos^7 x}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x\left( 1 - \sin^2 x \right) + \cos^5 x\left( 1 - \cos^2 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x \cos^2 x + \cos^5 x \sin^2 x}{\sin^3 x + \cos^3 x}\]
\[ = \sin^2 x . \cos^2 x\]
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Prove that:
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
The smallest value of x satisfying the equation
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2