Advertisements
Advertisements
प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
उत्तर
LHS = \[6 T_{10} - 15 T_8 + 10 T_6 - 1\]
\[=6\left( \sin^{10} x + \cos^{10} x \right) - 15\left( \sin^8 x + \cos^8 x \right) + 10\left( \sin^6 x + \cos^6 x \right) - 1\]
`=6(sin^2x+cos^2x)(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6sin^8x+6cos^8x-6sin^2xcos^2x-15sin^8x-15cos^8x+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9sin^8x-9cos^8x+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^2x+cos^2x)(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9sin^6x-9cos^6x+9sin^2xcos^2x+10sin^6x+10cos^6x-1`
`=3sin^2xcos^2x+sin^6x+cos^6x-1`
`=3sin^2xcos^2x+(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2xcos^2x)-1`
`=3sin^2xcos^2x+sin^4x+cos^4x-sin^2xcos^2x-1`
`=(sin^2x)^2+2sin^2xcos^2x+(cos^2x)^2-1`
`=(sin^2x+cos^2x)^2-1`
=12-1
=0
=RHS
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x