Advertisements
Advertisements
प्रश्न
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
विकल्प
7
5
4
2
उत्तर
2
Given equation:
\[\tan x + \tan2x + \tan3x = \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x + \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x (1 - \tan x \tan2x)\]
\[ \Rightarrow \frac{\tan x + \tan2x}{1 - \tan x \tan 2x} = - \tan3x\]
\[ \Rightarrow \tan ( x + 2x) = - \tan3x\]
\[ \Rightarrow \tan3x = - \tan3x\]
\[ \Rightarrow 2 \tan3x = 0\]
\[ \Rightarrow \tan3x = 0\]
\[ \Rightarrow 3x = n\pi\]
\[ \Rightarrow x = \frac{n\pi}{3}\]
Now,
\[x = \frac{\pi}{3} , n = 1\]
\[x = \frac{2\pi}{3} , n = 2\]
\[x = \frac{3\pi}{3} = 180^\circ\], which is not possible, as it is not in the interval \[(0, 2\pi)\].
Hence, the number of solutions of the given equation is 2.
APPEARS IN
संबंधित प्रश्न
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.