Advertisements
Advertisements
प्रश्न
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
उत्तर
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
\[ \Rightarrow 2\sin2x\cos x - 3\sin2x = 2\cos2x\cos x - 3\cos2x\]
\[ \Rightarrow \sin2x\left( 2\cos x - 3 \right) = \cos2x\left( 2\cos x - 3 \right)\]
\[ \Rightarrow \left( \sin2x - \cos2x \right)\left( 2\cos x - 3 \right) = 0\]
\[\Rightarrow \sin2x - \cos2x = 0 or 2\cos x - 3 = 0\]
\[ \Rightarrow \sin2x = \cos2x or \cos x = \frac{3}{2}\]
\[ \Rightarrow \tan2x = 1 or \cos x = \frac{3}{2}\]
But,
\[\cos x = \frac{3}{2}\] is not possible.
\[\therefore \tan2x = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow 2x = n\pi + \frac{\pi}{4}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The smallest positive angle which satisfies the equation
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x