Advertisements
Advertisements
प्रश्न
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
उत्तर
\[3 - 2 \cos x - 4 \sin x - \cos 2x + \sin 2x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - \left( 1 - 2 \sin^2 x \right) + 2 \sin x \cos x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - 1 + 2 \sin^2 x + 2 \sin x \cos x = 0\]
\[ \Rightarrow \left( 2 \sin^2 x - 4 \sin x + 2 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2\left( \sin^2 x - 2 \sin x + 1 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2 \left( \sin x - 1 \right)^2 + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right)\left( 2 \sin x - 2 + 2 \cos x \right) = 0\]
\[ \Rightarrow 2\left( \sin x - 1 \right)\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right) = 0\text{ or }\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \sin x = 1\text{ or }\sin x + \cos x = 1\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\sin \frac{\pi}{4} \sin x + \cos \frac{\pi}{4}\cos x = \cos \frac{\pi}{4}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x = 2n\pi + \frac{\pi}{2}\text{ or }x = 2n\pi, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.