Advertisements
Advertisements
प्रश्न
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
उत्तर
Given: \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\]
\[\Rightarrow \frac{\tan\left( x + 15^\circ \right)}{\tan\left( x - 15^\circ \right)} = 3\]
Applying componendo and dividendo, we have
\[\frac{\tan\left( x + 15^\circ \right) + \tan\left( x - 15^\circ \right)}{\tan\left( x + 15^\circ \right) - \tan\left( x - 15^\circ \right)} = \frac{3 + 1}{3 - 1}\]
\[ \Rightarrow \frac{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} + \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}}{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} - \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}} = \frac{4}{2}\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) + \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)}{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) - \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)} = 2\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ + x - 15^\circ \right)}{\sin\left( x + 15^\circ- x + 15^\circ \right)} = 2\]
\[\Rightarrow \frac{\sin2x}{\sin30^\circ} = 2\]
\[ \Rightarrow \sin2x = 2 \times \frac{1}{2} = 1 \left( \sin30^\circ = \frac{1}{2} \right)\]
\[ \Rightarrow \sin2x = \sin90^\circ\]
\[ \Rightarrow 2x = 90^\circ \left( 0 < x < 90^\circ \right)\]
\[ \Rightarrow x = 45^\circ\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.