Advertisements
Advertisements
प्रश्न
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
उत्तर
The given equation is \[2 \sin^2 x = 3\cos x\].
Now,
\[2 \sin^2 x = 3\cos x\]
\[ \Rightarrow 2\left( 1 - \cos^2 x \right) = 3\cos x\]
\[ \Rightarrow 2 \cos^2 x + 3\cos x - 2 = 0\]
\[ \Rightarrow \left( 2\cos x - 1 \right)\left( \cos x + 2 \right) = 0\]
But,
cos x = -2 is not possible
\[\therefore \cos x = \frac{1}{2} = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in Z \left( \cos x = \cos\alpha \Rightarrow x = 2n\pi \pm \alpha, n \in Z \right)\]
Putting n = 0 and n = 1, we get
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[4 \sin^2 x = 1\], then the values of x are
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.