Advertisements
Advertisements
प्रश्न
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
विकल्प
- \[x, \frac{1}{x}\]
- \[2x, \frac{1}{2x}\]
- \[- 2x, \frac{1}{2x}\]
- \[- \frac{1}{x}, x\]
उत्तर
We have,
\[secx = x + \frac{1}{4x}\]
\[ \Rightarrow se c^2 x = = x^2 + \frac{1}{16 x^2} + \frac{1}{2}\]
\[ \Rightarrow 1 + \tan^2 x = 1 + x^2 + \frac{1}{16 x^2} - \frac{1}{2}\]
\[ \Rightarrow \tan^2 x = x^2 + \frac{1}{16 x^2} - \frac{1}{2}\]
\[ \Rightarrow \tan^2 x = \left( x - \frac{1}{4x} \right)^2 \]
\[ \therefore \tan x = \pm \left( x - \frac{1}{4x} \right)\]
\[ \Rightarrow sec x - \tan x = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) or \left( x + \frac{1}{4x} \right) - \left[ - \left( x - \frac{1}{4x} \right) \right]\]
\[ = \frac{1}{2x}\text{ or }2x\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
The smallest value of x satisfying the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.