हिंदी

The Number of Values of X in the Interval [0, 5 π] Satisfying the Equation 3 Sin 2 X − 7 Sin X + 2 = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is

विकल्प

  • 0

  • 5

  • 6

  • 10

MCQ
योग

उत्तर

 6
Given:
\[3 \sin^2 x - 7 \sin x + 2 = 0\]
\[\Rightarrow 3 \sin^2 x - 6 \sin x - \sin x + 2 = 0\]
\[ \Rightarrow 3 \sin x (\sin x - 2) - 1 (\sin x - 2) = 0\]
\[ \Rightarrow (3 \sin x - 1) (\sin x - 2) = 0\]

\[\Rightarrow 3 \sin x - 1 = 0\] or \[\sin x - 2 = 0\]
Now,"
sin x = 2 is not possible, as the value of sin x  lies between - 1 and 1.
⇒ \[\sin x = \frac{1}{3}\]
Also, sin x is positive only in first two quadrants. Therefore, sin x is positive twice in the interval \[\left[ 0, \pi \right]\].
Hence, it is positive six times in the interval \[\left[ 0, \pi \right]\], viz \[\left[ 0, \pi \right], \left[ 2\pi, 3\pi \right] and \left[ 4\pi, 5\pi \right] .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 21 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×