Advertisements
Advertisements
प्रश्न
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
उत्तर
LHS = \[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right)\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left[ - \left( \frac{5\pi}{2} - x \right) \right] + \tan\left( \frac{5\pi}{2} + x \right)\tan\left[ - \left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) + \tan\left( \frac{5\pi}{2} + x \right)\left[ - \tan\left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) - \tan\left( \frac{5\pi}{2} + x \right)\tan\left( \frac{3\pi}{2} - x \right)\]
\[ = \sec\left( \frac{\pi}{2} \times 3 - x \right)\sec\left( \frac{\pi}{2} \times 5 - x \right) - \tan\left( \frac{\pi}{2} \times 5 + x \right)\tan\left( \frac{\pi}{2} \times 3 - x \right)\]
\[ = \left[ - cosec x \right]\left[ cosec x \right] - \left[ - \cot x \right]\cot x \]
\[ = - {cosec}^2 x + \cot^2 x\]
\[ = - \left[ {cosec}^2 x - \cot^2 x \right]\]
\[ = - 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.