Advertisements
Advertisements
प्रश्न
Solve the following equation:
\[\cot x + \tan x = 2\]
उत्तर
\[ \Rightarrow \frac{1}{\tan x} + \tan x = 2\]
\[ \Rightarrow \tan^2 x + 1 = 2\tan x\]
\[ \Rightarrow \tan^2 x - 2\tan x + 1 = 0\]
\[ \Rightarrow \left( \tan x - 1 \right)^2 = 0\]
\[\Rightarrow \tan x = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \frac{\pi}{4}, n \in Z \left( \tan\theta = \tan\alpha \Rightarrow \theta = n\pi + \alpha, n \in Z \right)\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The smallest value of x satisfying the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.