हिंदी

Find the general solution of the following equation: sin x = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]
योग

उत्तर

We have:
\[\sin x = \frac{1}{2}\]
The value of x satisfying \[\sin x = \frac{1}{2}\] is \[\frac{\pi}{6}\]

∴ \[\sin x = \frac{1}{2}\]
⇒ \[\sin x = \sin\frac{\pi}{6}\]
⇒ \[x = n\pi + ( - 1 )^n \frac{\pi}{6}\]
\[n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 1.1 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×