हिंदी

Find the General Solution of the Following Equation: Sin X = Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

\[\sin x = \tan x\]
योग

उत्तर

We have:

\[\sin x = \tan x\]
\[\Rightarrow \sin x - \tan x = 0\]
\[ \Rightarrow \sin x - \frac{\sin x}{\cos x} = 0\]
\[ \Rightarrow \sin x \left( 1 - \frac{1}{\cos x} \right) = 0\]
\[ \Rightarrow \sin x (\cos x - 1) = 0\]
\[\Rightarrow \sin x = 0\] or
\[\cos x - 1 = 0\]
Now,  
\[\sin x = 0 \Rightarrow x = n\pi, n \in Z\]

\[\cos x - 1 = 0 \]

\[ \Rightarrow \cos x = 1 \]

\[ \Rightarrow \cos x = \cos0 \]

\[ \Rightarrow x = 2m\pi, m \in Z\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 2.11 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


General solution of \[\tan 5 x = \cot 2 x\] is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×