Advertisements
Advertisements
प्रश्न
Solve the following equation:
`cosec x = 1 + cot x`
उत्तर
Given,
`cosec x = 1 + cot x`
⇒ `1/sin x = 1 + cos x/sin x`
⇒ sin x + cos x = 1
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ `s 1/sqrt2 sin x + 1/sqrt2 cos x = 1/sqrt2` {dividing by √2 both sides}
⇒ `sin x sin pi/4 + cos pi/4 cos x = cos pi/4.` {cos A cos B + sin A sin B = cos(A − B)}
NOTE: The ratio of sin can also be used in place of cos; the answer stays the same, but the form may change. If you enter numbers for n, you will receive the same values in both forms.
If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z
∴ `x - pi/4 = (2npi ± pi/4).`
∴ `x = (2npi ± pi/4) + pi/4` where n n ∈ Z
`x = 2npi or x = 2npi + pi/2` where n n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The smallest positive angle which satisfies the equation
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.