हिंदी

Solve the Following Equation: √ 3 Cos X + Sin X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]

योग

उत्तर

 Given:

\[\sqrt{3} \cos x + \sin x = 1\] ...(i)
The equation is of the form of \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3}, b = 1\] and C = 1.
Let: q = r cos α and \[a = r \cos \alpha\]
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and
\[\tan \alpha = \frac{b}{a} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = \frac{\pi}{6}\]
On putting
\[a = \sqrt{3} = r \cos \alpha\] and b =1 = r sinα  in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 1\]

\[\Rightarrow r \cos (x - \alpha) \hspace{0.167em} = 1\]

\[ \Rightarrow 2 \cos (x - \alpha) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \frac{1}{2}\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \cos \frac{\pi}{3}\]

\[ \Rightarrow x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}, n \in Z\]

On taking positive sign, we get:

\[x - \frac{\pi}{6} = 2n\pi + \frac{\pi}{3} \]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{3} + \frac{\pi}{6}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = (4n + 1)\frac{\pi}{2}, n \in Z\]
Now, on taking negative sign of the equation, we get:
\[x - \frac{\pi}{6} = 2m\pi - \frac{\pi}{3}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{3} + \frac{\pi}{6}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{6} = (12m - 1) \frac{\pi}{6}, m \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 6.2 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×