हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:cos θ + cos 3θ = 2 cos 2θ - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ

योग

उत्तर

cos 3θ + cos θ = 2 cos 2θ

`2 cos ((3theta + theta)/2) * cos ((3theta - theta)/2)` = 2 cos 2θ

`2cos ((4theta)/2) * cos ((2theta)/2)` = 2 cos 2θ 

2 cos 2θ . cos θ = 2 cos 2θ

cos 2θ . cos θ – cos 2θ = θ

cos 2θ (cos θ – 1) = θ

cos 2θ = θ or cos θ – 1 = θ

cos 2θ = θ or cos θ = 1

To find the general solution of cos 2θ = θ

The general solution is

2θ = `(2"n" + 1) pi/2`, n ∈ Z

θ = `(2"n" + 1) pi/4`, n ∈ Z

To find the general solution of cos θ = 1

cos θ = 1

cos θ = cos 0

The general solution is θ = 2nπ , n ∈ Z

∴ The required solutions are

θ = `(2"n" + 1) pi/4`, n ∈ Z

or

θ = 2nπ, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (iii) | पृष्ठ १३३

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×