Advertisements
Advertisements
प्रश्न
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
उत्तर
cos 3θ + cos θ = 2 cos 2θ
`2 cos ((3theta + theta)/2) * cos ((3theta - theta)/2)` = 2 cos 2θ
`2cos ((4theta)/2) * cos ((2theta)/2)` = 2 cos 2θ
2 cos 2θ . cos θ = 2 cos 2θ
cos 2θ . cos θ – cos 2θ = θ
cos 2θ (cos θ – 1) = θ
cos 2θ = θ or cos θ – 1 = θ
cos 2θ = θ or cos θ = 1
To find the general solution of cos 2θ = θ
The general solution is
2θ = `(2"n" + 1) pi/2`, n ∈ Z
θ = `(2"n" + 1) pi/4`, n ∈ Z
To find the general solution of cos θ = 1
cos θ = 1
cos θ = cos 0
The general solution is θ = 2nπ , n ∈ Z
∴ The required solutions are
θ = `(2"n" + 1) pi/4`, n ∈ Z
or
θ = 2nπ, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.