Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
विकल्प
2 sec x
−2 sec x
sec x
−sec x
उत्तर
−2 sec x
\[ = \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} + \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}} + \sqrt{\frac{\left( 1 + \sin x \right)^2}{1 - \sin^2 x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}} + \sqrt{\frac{\left( 1 + \sin x \right)^2}{\cos^2 x}}\]
\[ = \frac{\left( 1 - \sin x \right)}{- \cos x} + \frac{\left( 1 + \sin x \right)}{- \cos x} \left[ \frac{\pi}{2} < x < \pi, \text{so }\cos x \text{ will be negative . }\right]\]
\[ = - \left( \sec x - \tan x \right) - \left( \sec x + \tan x \right)\]
\[ = - 2\sec x\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
Write the solution set of the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.