हिंदी

If 0 < X < π 2 , and If Y + 1 1 − Y = √ 1 + Sin X 1 − Sin X , Then Y is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to

विकल्प

  • \[\cot\frac{x}{2}\]

     

  • \[\tan\frac{x}{2}\]

     

  • \[\cot\frac{x}{2} + \tan\frac{x}{2}\]

     

  • \[\cot\frac{x}{2} - \tan\frac{x}{2}\]

     

MCQ

उत्तर

\[\tan\frac{x}{2}\]
We have: 
\[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)^2}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)} \left[ \because 0 < x < \frac{\pi}{2} \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4}, 0\text{ to }\frac{\pi}{4} \cos x\text{ is greater than }\sin x \right]\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} + \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}}{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} - \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}} \]
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \]
Comparing both the sides: 
\[y = \tan\frac{x}{2}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 5 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the general solutions of tan2 2x = 1.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×