Advertisements
Advertisements
प्रश्न
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
विकल्प
- \[\cot\frac{x}{2}\]
- \[\tan\frac{x}{2}\]
- \[\cot\frac{x}{2} + \tan\frac{x}{2}\]
- \[\cot\frac{x}{2} - \tan\frac{x}{2}\]
उत्तर
We have:
\[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)^2}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)} \left[ \because 0 < x < \frac{\pi}{2} \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4}, 0\text{ to }\frac{\pi}{4} \cos x\text{ is greater than }\sin x \right]\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} + \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}}{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} - \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}} \]
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \]
Comparing both the sides:
\[y = \tan\frac{x}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the general solutions of tan2 2x = 1.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.