हिंदी

Solve the Following Equation: 2 Sin 2 X + 2 Cos 2 X = 2 √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]

योग

उत्तर

\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + 2^{1 - \sin^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + \frac{2}{2^{\sin^2 x}} = 2\sqrt{2}\]
\[\text{ Let }2^{\sin^2 x} = y\]
\[ \Rightarrow y + \frac{2}{y} = 2\sqrt{2}\]
\[ \Rightarrow y^2 + 2 = 2\sqrt{2}y\]
\[ \Rightarrow y^2 - 2\sqrt{2}y + 2 = 0\]
\[ \Rightarrow y^2 - \sqrt{2}y - \sqrt{2}y + 2 = 0\]
\[ \Rightarrow y\left( y - \sqrt{2} \right) - \sqrt{2}\left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right)^2 = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow y = \sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} = 2^\frac{1}{2} \]
\[ \Rightarrow \sin^2 x = \frac{1}{2}\]
\[ \Rightarrow \sin^2 x = \sin^2 \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 10 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×