Advertisements
Advertisements
प्रश्न
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
उत्तर
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + 2^{1 - \sin^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + \frac{2}{2^{\sin^2 x}} = 2\sqrt{2}\]
\[\text{ Let }2^{\sin^2 x} = y\]
\[ \Rightarrow y + \frac{2}{y} = 2\sqrt{2}\]
\[ \Rightarrow y^2 + 2 = 2\sqrt{2}y\]
\[ \Rightarrow y^2 - 2\sqrt{2}y + 2 = 0\]
\[ \Rightarrow y^2 - \sqrt{2}y - \sqrt{2}y + 2 = 0\]
\[ \Rightarrow y\left( y - \sqrt{2} \right) - \sqrt{2}\left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right)^2 = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow y = \sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} = 2^\frac{1}{2} \]
\[ \Rightarrow \sin^2 x = \frac{1}{2}\]
\[ \Rightarrow \sin^2 x = \sin^2 \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan θ + sec θ =ex, then cos θ equals
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of points of intersection of the curves
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval