Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
Given:
\[\sin x + \cos x = 1\] ...(i)
Now,
\[\tan\alpha = \frac{b}{a} = 1 \Rightarrow \alpha = \frac{\pi}{4}\]
On putting
\[r \sin \alpha \sin x + r \cos \alpha \cos x = 1\]
\[\Rightarrow r \cos ( x - \alpha) = 1\]
\[ \Rightarrow \sqrt{2} \cos \left( x - \frac{\pi}{4} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in Z\]
On taking positive sign, we get:
\[x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
On taking negative sign, we get:
\[x - \frac{\pi}{4} = 2m\pi - \frac{\pi}{4}\]
\[ \Rightarrow x = 2m\pi, m \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that:
In a ∆ABC, prove that:
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cot x - \tan x = \sec x\], then, x is equal to
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.